-	-	_	_	_
IABL	E	I	Ι	Ι

Elastic Moduli of Quartz*

Modulus	Value (10 ¹¹ dyne/cm ²)	Reference
2nd-order	0 757	
^c را**	8.757	(39)
c ₁₂	0.704	п
°13	1.191	п
c _{l4}	-1.804	п
c33	10.575	п
3rd-order		
°111	-21.0	(40)
c112	-34.5	н
C113	1.2	п
c114	-16.3	п
c133	-31.2	п
c ₃₃₃	-81.5	u.
4th-order		
c1111	1705	Present Work
c3333	1849	. в

*The second-order constants are isentropic, the third-order are mixed isothermal, isentropic constants, and the fourthorder are Hugoniot constants, (see text).

**The c_{ll} constant used is appropriate for open circuit compression, i.e., at constant electric displacement, D. thus produced are negligible.

The differences between the purely isentropic third-order moduli and the mixed moduli given in Table **III**can be calculated from Eq. (2.19)

The temperature coefficients of expansion, as given by MASON (47) are:

$$\alpha_3 = 7.8 \times 10^{-6}, \alpha_1 = \alpha_2 = 14.3 \times 10^{-6}$$

and the expression, due to Westrum, reported by McSKIMIN (39) for the specific heat is:

$$C_p(T) = C_p(T_c) + (T - T_c)C_1 + (T + T_c)^2 C_2 + (T - T_c)^3 C_3 \alpha \dots$$

(77.4°K < T < 298°K)

where

$$T_c = 190^{\circ}K$$

 $C_p (T_c) = 5.189 \times 10^6 \text{ erg/g}^{\circ}K$
 $C_1 = 2.444 \times 10^4 \text{ erg/g}^{\circ}K$
 $C_2 = -4.126 \times 10^1 \text{ erg/g}^{\circ}K$
 $C_3 = 5.327 \times 10^{-2} \text{ erg/g}^{\circ}K$

taking

$$T = 25^{\circ}C$$
, $\rho_0 = 2.6485 \text{ g/cm}^3$, $C_n = 7.42 \times 10^{6} \text{ erg/g}^{\circ}K$,

and estimating $(\frac{\partial C_{33}^S}{\partial T})$ from McSkimin's data taken at 25°C and -195.8°C to be of the order of -1 x 10⁸ dyne/cm² °K we find the difference given by Eq. (2.19) for the c₃₃₃ constant, for example, to be of the order of 5 x 10⁸ dyne/cm².